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By Howard W. Emmons
SUMMARY

The two-dimensional flow of a frictionless, adlabatic,
perfect gas inside of a two~dimensional hyperbolic noszzle
has been studied by numerical methods described in NAGA
Technical Note No. 932. 4 series of solutions are presented
which show an almost continuous transformation of known sub-
sonic solutions to the known subsonic-supersonic solution,
The words Yalmost continuous" are used because difficulties
at the point where the shock waves touch the wall seem %0
prohibit continuous transformation from one type of solution
to0 the next.

Solutions with partial shocks, that is, shock waves
that do not extend all the way scross the nozzle, are very
hard to obtain. Residuals of one part in one thousand can
sometimes be elimingted only by introduecing a shock, The
type of solution obtained is, thus, very sensitive to small
chgnges in nozzle form.

The solutions are not single-valued, in generel, ian the
relation of flow through the nozzle %o pressure at a given
point in the nozzle, In experiments, the flow might make
small Jjumps as the type of flow pattern passes through un-
stable regions.

4 few schlieren photographs show that the actual flow
through this nozzle differs considerably from the computed
gsolutions, All the differences can be ascribed to the ef-
fects of friction, Since the flow pattern in the nozzle is
very oritical in the slightly eupersonic regione, the phenom~
ena would be greatly altered if a boundary layer were included
in the computation,
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It has been known for some years that the perfect fluid
theory, p = £(P), was not adequate to describe any of the
phenomena during transition from wholly subsonic to subsonic-
supersonic flow in a nozzle. For a one=dimensinnal thsory,
shock waves together with an otherwise perfect fluid are
enough, From this report it can be concluded that for the
corresponding two-dimensional problem a perfect fluld theory
supplemented with shock waves is still not encugh. For ade-
quate check with experiment, a thenry must te based upor a
fluid with friction (at least in reginns near the walls; in
other regions frictinan would have nn effect). Salutinne with
this imperfect fluid involve a vrohibitive amount of ladbor
with present computing techniqgues.

INTRODUCTIOR

The flow of compressible fluids through nozzles has
been the subject of investigatlion, both experimental and
theoretical, for more than a century. Fearly all the theo-
retical work has been cohfined to considerations of the flow
of perfect gases, generally neglecting friction and heat
transfer, although some work covering these latter effects
has been attempted. Many of the early results are summed up
in reference 1., Like all complicated physical vroblems, the
first theoretical attacks are made vith an oversimplified
physical picture. In the case of flow fthrough nozzles this
simplification of fluid properties is used together with =a
simplified geometry. This assumes a one-dimensional treat-
ment of the flow in the gsense that velocity and fluid prop-
ertles are assumed to be unicue functions of a single vari-
able which represents distance slong the nozzle axis, the
variation in nozzle cross section being taken normal to this
axig or 1in some other but equally arbitrary maanner. The
one~dimensional theory shows that a simple converging-
diverging nozzle acts for low velocities like & conventional
venturi meter; that is, the veloclty ircreases and the pres-—-
gure decreases to the minimum section, following which the
reverse occurs. As the exit pressure of the nozzle is low-
ered, the velocity at the minimum section continues to in-
crease until a velocity eoual to the local speed of sound
appears.

In figure 1 the pressure variation along an arblirary
nozzle 1s plotted, showing the region for which the flow is
similar %0 a conventional venturi meter. With further drop
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in nozzle exit pressure the velocity at the diverging portion
of the nozgle immediately following the throat increases
above that of the speed of sound and continues thus to in-
crease until interrupted by a shock wave. The standing shock
wave adjusts its position in such a way that the flulid after
the shoeck wave can continue through the nogzzle to come out at
the specified exit pressure. If the exit of the nozzle is
considered infinitely far away, the shock wave can be moved
as far from the minimum section as desired. If the nozzle

is short, the shock wave eventually arrives at its end, then
passes out of the nozzle in a complex manner., The phenomena
cccurring outslde of the nozzle will not be considered in
this report. Oonsider what happens inside of the nozzle when
s better geometric approximation to 1ts form 1s assumed.

The simplest improvement in assumption about the geom-
etry of a nogzzle is t0 consider a two-dimensional passage,
that i1s, a passage like that drawn in figure 1, except that
it will not be assumed that velecity and fluid properties
are constant across some arbitrarily drawn cross sectlon.

In a recent work (reference 2) a refinement of the one-
dimensional treatment which is good in the neighborhood of
the nozgzle axls was studied., ¥No agttempt was made t0 inves-
tigate solutions when shock waves were present, and no dis-
cussion is given of the transition from subsonic to subsonic-
supersonic type of flow, Some work in this directiorn has
been attempted. (See referencee 3, 4, and 5.) In each case
the differential equations describing the two-dimensional
motion of & frictionless, adisbatic, irrotational perfect

gas are written for the region where the Mach number equals

1l and solutions are sought irn the form of power series,

Very considersble ladbor is required o evaluate the coeffi-
clents of the power series and, consequently, the power se-
ries were terminated at approximately the elghth power tern,
G, I. Taylor (reference 3) has studied in this way the sym-
metrical flow through a symmetrical passage. Thus, his so-
lutions either are completely subsonic, that is, like the
conventional venturl meter, or contain symmetrical super-
sonic regions located in the minimum section at the wall,

As a result of this work it was shown that this type of so-
lution was limited in a way which depended upon the curvature
of the wall, T, Meyer (reference 4) has studied the nonsym-
metrical flow through a nozzle which passed through the speed
of sound from subsoniec $o supersonic. The solutions of Taylor
and Meyer are sketched in figure 2a and 2e, respectively.
Neither of these workers gave any indication of how the flow
could change from the one form t0 the other. The generaliza-
tion of the results of the one~dimensionsl theory is not
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immediate since a shock wAve at subsonic velocity is impos-—
sible and the solutions of Taylor do net 1lnclude supersonic
regions that extend completely across the passage. It 1s,
therefore, impossible to =2gsume with the one-dimensional
theary that a minute shock anpears st M =1 (at minimum
section) and then grows as the exit pressure is dropped. An
. attempt to flll the gap by the same power serles method has
been made by EH. Glrtler (reference 5), who used powver series
which permitted nonsymmetrical solutions and showed that so-
lutions could be obtained which satisfied the d%fferential
eauation up to the eighth degree terms used. Gortler does
net shew, however, that sclutions of this form have any 4i-
rect bearing upon vhat actually happens since he does not
show that his series, even if continued %o infinity, could
actually represent solutions to the differential ecu=ation.
It is new to be expected on the basies of results of other in-
vestigations, such as those of Ringleb (reference 6), that
beyond the 1limit solutlon of Taylor there only exist solu-—
tions vith cusps and overlapping streamlines which, of course,
are of ne physical significance. Tke results of Gortler's
work, however, are suggestive in that the form of the constant
veloclity lines obtained by him indicates that the eighth de-
gree equations are attempting to give a compression shock,
but, of course, are unable to do so. It is easily conjec—
tured, therefore, that the transition from the symmetrical
type of flow of Taylor to the nonsymmetrical flow of Meyer
takes place somewhat ag indicated in figures 2b, 2c¢, and 24.
A small comvression shock would be imagined as starting at
the wall in Tayler's solution at the down stream point where
the constant velocity M =1 1line arrives at the wall. I%
then grovs in magnitude and extends toward the center of the
passage. Bventually the shocks from oppnosite walls arrive
at the center of the passgsage, combine and move ag a single
shock en downstream similar to the one~dimrensional theory.
This picture, as it turns out, is apvroximately correct, al-
though certain modifications have still to be considered in
future work,

This investigation, conducted at Harvard University,
was svponsored by and conducted with the financial assistance
of the National Advisory Committee for Aeronautics.

The author wishes to acknowledge indebtedness %o Dr.
Andrew Vazsonyl who carried out all the detailed computations
and supwnlied many ldeag during the hours of discussion of
various fine points of the computations and the fiuid mechan-
ics.



NACA TN No, 1003 5

SYMBOLS
a accustic velocity
D half nozzle throat dimension
M Mach numbsr
D pressure
Pr Prandtl number
a velocity (components u, v)
Q residual
R,T radius of curvature of streamline
w complex~-veloelity potential
x,¥ coordinates in physical plans
2 complex coordinate in physical plane
a angle between ¥ gand 1 1lines
¥ isentropic exponent
8 lattice spacing in computation
€ fraction of lattice spacing from net point to shock
wave
P deflection angle of streamline produced by an obligque
shock
r stream function
n stream function for incompressible fluid
£ velocity potential for incompressible fluid
Oy obligque shock angle

mase density

©
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w rate of rotation

wr = %%- dimensionless rotation

Subscripts

& condition after a shock wave

b condition before a shock wave

er critical condition

i incompressible

E,n denote differentiation in the corresponding
direction

0ys1,893,4,5 lattice points

o} stagnsation conditlion

RESULTS OF RELAXAPION SOLUTION OF THE PFLOW
THROUGH A HYPERBOLIC NOZZLE

Reference 7 shows how t0 apply the rslaxation method %o
the solution of compressible fluid flow problems in two di-
mensions, A simple channel was chosen for first investiga-
tion, so that attention could be concentrated on the Aiffi-
culties of the compressible fluids part of the problem with-
out being bothered by difficult geometry. As a consegquence,
the channel formed by two hyperbolas was chosen. The complex
Potential function for this nozzle is

w = ginh™? z (1)

where
Z =x + 1y
w=£ + 11
4 velocity potential

n stream function
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The physical shape of this nozzle in the x,y plane is easily
conputed from

x = sinh £ cos 1
(2)
y = cosh £ sin n

while the veloeity g4 of an incompressible fluid flowing
through this passage is given by

osh 2¢( + cos 21
12 . cos £ cos_2 ()
a3 2

Figure 3% shows the £ and M 1lines in this nozzle., These
lines are the coordinate system used in the compressible
flow solutions, PFigure 4 shows the flow of an incompressi-
ble fluid through this passsage. This solution is to be com-
pared with later solutions for the flow of c¢compressible
fluid at high velocity. 4l1ll the remaining figures (s
through 30) show various facts about the flow of a gas
through this nogzle while table 1 summarizes wvarious numer-
icel details, It ghould be observed that the flow ie essen-
tially that of a conventional venturi meter for all cases in
which the Mach number at the center of the minimum sectlon
is M < 0,812, Thies is the limiting case essentially as
would have been described by the solutions of Taylor, 3By
graphical interpolation (fig. 9) it was found that M =1
first appears at the wall for a center Mach number of 0,772,
The appearance of M = 1 at the noszle wall is in no way
critical for the flow through the nozzle. I%t is of interest
only because it formerly was, and ogccasionsally still 1ls, er-
roneously asgsociated with some criticel aspect of the flow,
Shock waves do not, and indeed could not, occur when only
one point has reached the local sonic velocity.

The essentially subsonlec flows of figures 4 through 8
are equivalent o0 the results recently publiehed by Southwell,
Greene, and Fox (references 8 and 9) except for a different
nozzle shape, The work of these two papers and the present
report were carried out entirely independently and the extent
to which the results agree is gratifying,

Before the solutions with shocks are discussed, it
should be observed that the computer has a choice of the
type of shock wave he wishes t¢ consider, Should shock
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TABIE I

THE MACH NUMBER AT VARIOUS POINTS IN THE NOZZLE

M ¥ ¥ i
Center of Center line Wall at Maxi
136K nozzle et = = 0,93 x =0 1
& D ¢ in Remarks
ure throat (t = 0.6, =0.0, nozzle
(E"ﬂ = 0) M= 0.0) M= 0'6)
4 0 0 Q }\
5 «500 46 o742 Subsonic
6 «692 «B05 «875
« 772 1,000 By interpolation
7 «793 «540 1,035 Symmetrical
8 «812 850 1.085 Subsonic~supersonic
- - — . “ -
10 «832 «556 1,133 1.143 I
11 «875 «563 1.140 1.187 { Partial shocks
i2 575 I' 1.398
13 ! «B602 1,443
8 2
14 a 625 ~ 1.525 | Complete shocks
o ~1
15 ' «642 1,63 l
18 N 1.456 \ o Complete subsonic-
supersonie solution
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waves be normal or oblique? At the wall the immediate thought
is to use only normal shocks since, ther, the directlon of

the stream is unaltered on crossing the shock and hence the
stream contlinues along the wall., Ag will be discussed later,
a streamline curvature Jjump occurs across the shock which re-
guires a curvature singularity in the subsonic flow follow-
ing the shock. This singularity arises naturelly during the
course of the relaxatlion solution, If an oblique shock had
been used, soclutions could have been obtained which would
have included a singularity, in some cases a stagnation point,
downstream from the shock wave. In thls report it was de-
cided to use only normal shocks at the wall, In an actual
nozzle, the boundary layer would alter the shock boundary
condition consideradbly.

Pigures 10 through 12 show solutions with partial shocks,
that i1s, shocke that d¢ not extend all the way across the
nozzle, Figure 12 is included in this category in spite of
the fact that the shock is drawn to extend completely across
the nozzle, This case is & solution for which the shock
waves from oppesite walls have just combinsed. The shock
waves are here tangent to the M =1 1line at the center
line of the channel. Thus, the shock waves become infini-
tesimal in megnitude. In the numerical work from which this
solution was drawn, much higher accuracy would have been
needed to distinguish between the solution as drewn and the
solutions obtained, by merely erasing a small section of the
shock and M =1 1line at the center of the nozgle. In
other words, with a stream function of the order of 20,000
at the wall compared to zero at the center line there is not
sufficient accuracy to distingulsh precisely when the shock
vaves first combine., In figures 12 through 16 the shock
wave is gradually moving down the nozzle essentially as pre-
dicted Py the one—~dimensional theory.

The first fact to be observed about these solutions
with shock waves is the faect that they are not normal bdut
eurve upstream toward the center of the passage, In the
course of obtalning solutions normal shock waves were in-
serted in the passage in what was considered the proper loca-
tion. During the course of solution these shock waves had
to be moved and made obligue by the processes described in
gppendix I in order to eliminate the residuals, As a first
approximation it might be observed that the shock waves must
curve so that the rate of change of entropy normal to the
streamlines gives rise to a sufficient magnitude of rotation
term of the differential equation to replace the density
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terms of the differential equation which decrease discontin-
uously across the shock wave. The photograph (fig. 17)
taken in g high-speed wind tunnel at Harvard University il-
lustrates such a shock, -

In figure 17 there is also shown another photograph at
the "same" condition on a different day teaken in 4 micro-
seconds with & schlieren system. The phenomenon of many
shocks is a nonsteady one probably associated with the turbu-
lence of the alr stream. Small "turbulence" pressure waves
unable to pass through the throat accumulate there until
they become a shock wave of gufficient magnitude %0 pass
through. It should not be inferred that the partial shocka
of the solutions are of no importance because they were no%b
found in these nozzle experiments., For an airfoil in free
flight only partial shocks are possible. After complete
shocks are formed, agreement between wind-tunnel and free-
flight conditions gould not be expected.

Everything in these solutions appears to follow essen-
tlally the conjectured progress of development and growth of
the shock waves. (See fig. 2.) That this is not quite cor-
rect can be seen by examining figures 8 and 10 more closely.
It will be observed that the shock wave seems to arise (fig.
10) not at the point where the M =1 1line touches the wall
(fig. 8) but somewbzt upstream of this point, aazd, in fast,
makes a sudden appearance (not starting with zero length
near the wall). This can also be seen from the dotted line
in figures 20 gnd 21, The changes that take place as the
flow conditions are changsd are shown agzin in figures 18
through 21, where the varigtion of Mach rumber and prescurse
along the center line arnd along the wall are shown., Thae
variation in Mach number near the wall is shown in figure 10,
It will be observed that the Mach numbsr and pressure dls-
tributions along the wall proceed smoothly up to a shock
wave, They then, of course, must change abruptly to the sub-
sonic value appropriste to & shock wave at the correct angle
(in this case normal) for the Mach number existing ahead of
the shock. The pressure and Mach number do not vary smcothly
from this value, however, but are shown with a discontinuaous
change on the subsonic side of the shock. For the solutions
presented in this report, the Mach numbers at 211 net points
along the wall on the subsonic side of the shock wave fsll
on & smooth curve which when extrapolated gave the disconti-
nuities shown., ¥For the row of net points adjacent to the
wall no peculiar phenomens were required to get a2 solution,
Later work, not reported here, has produced cases in which
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the Mach number rises very steeply from the value after the
shock and then turns smoothly into the descending Mach num-~
ber curve. Thus it appears that the curves of this report
should show a steep rise rather than the discontinuitles.

Although the precise nature of the singularity at the
wall in the subsonic flow following a shock has not been de-
termined, there is no difficulty in finding the qualitative
explanation of this phenomenon. Consider the supersonic
flow of a compressible fluid along the convex side of a wall
of given radius of curvature, In order thaet the fluid fol-~
low the wall there must be adjacent to the wall a normal
component of pressure gradient such that the pressure in-
creases away from the wall., This pressure gradient ls re-
quired t0 turn the velocity vector as the fluid moves along
the curved wall., If, now, a shock wave stands across this
flow and reaches the ocurved wall, the stream ahead of the
shock is left unaltered. The stream immediately behind the
wave is determined by the shock wave conditions, The perti-
nent condition for the present congiderations is the fact
that, except for modifications caused by the entropy change,
the lower the pressure (the higher the velocity) before a
normal shock the higher the pressure immediately following
the shock, Since the pressure before the shock increases
away from the wall, the pressure after the shock will de-
crease away from the wgll. Hence the streemlines immediastely
bekind the shock must be curved away from the wall,

For the solutions presented in thie report, the fluid
wes required to follow the wall. The streamlines behind the
shock must, therefore, reverse their curvature in such a way
that the inflectlion point approaches the shock wave as one
moves closer $0 the noszezle wall; while at the wall, the 1ln-
flection point coincides with the shock wave. In a qualita-
tive sense, therefore, the subsonic flow behind the shock
wave 1s slimilar to the isentropic flow of a fluid along &
wall with g discontinuity of radiuns of curvature, The flow
of an incompressible perfect fluid along a wall with a dis-
continulty of radius of curvature has been studied (reference
10) end leads to an infinite rate of change of velocity along
the wall. Thus there is & singularity in the flow of an in-
compresslble fluid along a wall with 2 Jump in curvature of
the same type as that found in the subsonic flow following a
shook wave,

In the explanation of the wall singularity in the sub-
sonic flow following a shock wave, it was noted that the
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entropy Jjump through a shock would cause some modification

of the explanation. On figure 22 the ra%tio of the radius of
curvature of a streamlline before and after a normal shock is
shown as a function of the Mach number before the shock,
teking into account the changes of entropy =s they actually
oceur. Only at one Mach number is 1t poesible for the stream
to continue along a wall (with continuous curvature) without
a singularity, and that is at a Mach number given by equation
(22), which for air with ¥ = 1.40 is at M = 1.66.

An infinite rate of rise of pressure along any stream-
line adjacent o the wall is not possible because of the
second’ law of thermodynamics which prevents an expansion
shock. 3By writing the equation of continuity, momentum, and
energy for a stream tube element enclosing a standing wave,
there 1s found tn be one and only one permissible subsonic
state for each initial state, provided it is permissible to
use an element the length of which in the direction of the
streamlines is of higher order than its width. Teo find out
what can happen at the wall, i% is necessary to use a streanm
tube element with the wall as one side and with a width of
the same (or higher) order as the length. If such an element
is used, the effects on its sides are of the same order as
the effects on its ends, and, consequently, the conclusions
about unique state after the wave do not follow.

The rapid rise in Mach number along the wall after a
shock wave varies in severity with both the wall curvature
and the initiel Mach number. In figure 23 the ratio of the
Mach numbers before and after this rapld rise is plotted
against the Mach number before the shock. There is also
plotted the ratio of Mach numbers across a normal shock. It
appears that for the present nozzle the rapid rise of Mach
number following a shock caused by the curvature singularity
would Just compensate for the Mach number drop through the
shock itself a3t M = 1,075. Thus, it appears that if a shock
solution had been sought at 2 lower Mach number than 1.075,
there would have been & rapid rise in speed along the wall
which would have left a supersonic stream moving faster then
the original stream. The present investigation needs exten~
sion at this point if questions concerning the first appear-
ance of a shock wave are to be answered.

It thus appears that {this revort takes a step in the
direction of clarifying the so-called critical conditions
assocliated with the first appearance of shock waves dut falls
far short of an adequate explanastion.
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It appears that not only is the perfect fluld without
shocks an insufficient mathematical theory to cover the prac~-
tical phenomene arising in connection with the flow of com-
pressible fluids but that even the extended theory which in-
cludes compression shock discontinuities, 28 in thls report,
is not adequate t0 descrihe the facts properly. It is prob-
able that a suffilciently general mathematical theory (and
presumably a fluld with friction would provide such) could
give smooth transitions from one type of solution to another.
There is, however, no reasson to assume thet such solutions
would be either unigue or stable,

It may be argued that the sudden Jump from one type of
solution to another, as required by the present theory, does
not contradict experimental observations, True. EHowever,
consider the case in which Taylor's limiting solution occurs
for a passage in which the velocity at no point has yet risen
to as high & value as ¥ = 1,07, In this case no shock waves
can arise at all if a discontinuous increase of veloclity at
the wall is considered objectionable. The present theory
(perfect fluid with shocks) is not adequate to cover all
cases but must be extended.

Figures 19 and 21 should he compared with figure 1. It
is seen that the one-dimensional theory has teen modifled con-
slderably and has been modified in different ways for the
nozzle axis and for the nozzle well.

The flow through the nozzle is plotted against pressure
at various points in figures 24, 25, and 236, The reason for
the differences in appearance of these figures can be undsr-
stood by comparison with figures 4 through 16, 19, and 21l.
The importance of these differences follows if it 1s con-
s8ldered that nozzle experimenits are usually performed by reg-
uleting the pressure in a large tank intoc which the gas dls-
charges or by regulating the pressure at 2 small hole locgted
somewhere in the nogzzle wall. It is quite obvious that there
is no guarantee that a single-valued relatlon exists between
the pressure at a given point and the flow through the nozzle,
It is quite possible for a deorease in pressure to correspond
to a decrease 1n flow rather than the usual increase in flow.
In particular, & pressure hole drilled at certain points in a
nozzle may read a given value for as many as three different
flows. It may well be that some of these are more stable
then others, and therefore experimental difficulties and
anomalies might well arise in nozzle experiments, A few ad-
ditional results of interest are shown in figures 27 and 28.



NACA TN No. 1003 14

In figure 27 the distribution of rotation in the nozzle is
shown for the solution of figure 13. This rotation is far
from negligible, particularly as the shock wave moves down-
stream and becomes stronger. This rotation is such that it
will require the stream to separate from the wall sufficient-
ly far downstream from the nozzle throat. For the perfect
fluid congidered here, the rotation once produced cannot be
destroyed. Thus far downstream from the nozzle throat where
the velocity (without rotation) would approach zero, it can-
not now do so since the rotation does not decremse. The stream
function is to be considersd as a surface plotted over the
region of space through which the fluid flows. This surface
will have the gsame shape &s a soap film stretched over a
hole the shape of the domain and loaded with a pressure pro-
portional to the fluid rotation at the corresponding point,
If such a film were made for the present nozzle, the soap
film would be steepest at the throat mnd become flatiter and
flatter on receding from the throat sither upstream or down—
stream. Thus the fluld velocity would be gremntest at the
throat and aporoach zero at infinity. If there 1s rotation,
however, the soap film would be loaded. Since the rotation
cannot decrease, the loading dces not decrease awvay from the
throat and hence the socap film, instead of becomlng flatter
and flatter, is bulged by the lond. If the slone of the
soap film is Again intervreted as fliuid velocity, the fiuid
will be moving Away from the throat on one side of the bulgs
and toward the throat on the other. Where the bulge firsst
starts, there wouwuld be the separation point in the nozzle.
The consequences of this separation were not investigated.
While this analogy is strictly correect for incompressible
fluids only, it shows clearly the problem involved.

In figure 28 the variation in entropy behind the shock
waves is shown for all of the solutions with shocks, Since
entropy is & function of the stream function only for a par-
ticular solution, such a composite figure is possible (such
a figure 1is not possible for the rotation wvhich is a func-
tion of pressure as well as entropy egradient). By a refer-~
ence to the computation curves of the earlier report (refer-
ence 7), it is obvious that this change in entropy causes A
very considerable alteration of the properties of the fluid.
It is for this reason that the pairs of figures, 18, 19, =and
20, 21, show considerable differences. (For constant entropy,
p = f(M), and these figuras would differ only by an ordinate
scale change.)

In figure 29 the shock waves for 11 the solutions Aare
assembled for comparison. It is clear how the shock waves
arise near the wall, grow and move downstreanm.
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EFFRCTS OF FRICTION

Figure 30 shows a series of photographs of the flow
through a hyperbolic nozgzle taken in a high-speed wind tun-
nel 2% Harvard University. It ie not surprising thet this
flow in no case looks like the predicted flow, The rele-
tively small radius of curvature at the throat of the noz-
zle investigated makes it 1impossible for & rezl gas with
friction to follow the walls., Since for low velocity a Jet
gseparating from both walls is not very stable, the stream
usually separated from one wall and passed slong the other
(f1ow nonsymmetrical about axis of nozzle). As soon as
shock waves ¢f reasongble magnitude appeared, the stream
separated from boith sldes and passed out as a free jet.
Thue, there will have to be included in eny complete inves-
tigation the effects of friction on the modification of the

AaPLPantdosa WATnAamny ahonrma rr $Tha hornAane T awran whdmh madd_o
Cili€luvdive UOLULKETY SBSuape vy vilt Dvddagaly L48yG8i, #iavi avwa

fication will eventually have to include flow separatlion
which at the present cannot be satisfactorily predicted; and
also the boundary layer will introduce very considerable
~changes in the partial shock waves which appear and conse-

quently will greatly affect the pressure and velocity dis-
trivutions z2long the wall near the throat of the nozgle,
Such friction effects will, it is reasonably certain, always
lead to flow separation g% least locally between the end of
a shock wave and the wall., Two other effects which might be
worthy of note, although not coming directly under the head~
ing of friction, are (1) moiesture in the air and (2) heat
transfer, It is qulte probable that the first shock wave
encountered by the stream in the photographs of figure 30 is
closely connected with the molsture in the stmosphere as
changes in form of thig "throat shock" occcur with changes of
atmospharic molisture.

Phe consideration that the nozzle is not thermally con-
nected to any source or sink of heat (gernerally not true) is
not a guarantee that no heat transfer to the air strean
taekes place., Since the temperature in the boundary layer of
2 ges with Prandtl number other than Pr = 1 would not dbe
constant, the nozzle £0 be ln equilibrium with the gas would
have a varying wsll temperature along the nozzle length,

For a2 metal nozzle this would necessitate a considerable
flow of heat from one portlon of the nozzle to another and
hence from one portion of the gas stream to another, It is
not likely that this effect is ever very large but it should
not be forgotten completely since, in some cases, it might
be significant.
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CONCLUSIONS

The two-dimensional flow of a frictionless, adladbatie,
verfect gas through a hyperbolic nozzle follows very closely
that to be expected from the investigations of Taylor (ref-
erence 3) as long as no shock waves appear. A symmetrical
supersonic region appears near the wall at the throat for a
sufficiently high flow through the nozzle. There is a great-
est flow above which thig type of flow no longer exists,

In splte of attempts to determine exactly what 1t was
that caused the symmetrical solutions to cease exlsting 1%
could only be noted that 28 the maximum veloclty got higher,
the residuals (local fluld rotation) became more and more
difficult to dispose of, When it Decame absolutely impossi-
ble to dispose of the rotation (a state of affairs that is
sure t0 remain uncertain in s finite computation effort),
shock waves arise which greatly alter conditions and inci-
dently produce some rotation, thus permitting a solutlon to
be found.

The solutions presented in this report constitute a
story of the growth of the flow pattern inside of a nozzle
from zero velocity to the highest attainable velocity. This
fiow picturse is & good first approximation to what really
happens in g two~-dimenslonal nozzle as long as the real flow
through the nozzle is free from flow separation, Further
acouracy o0f prediction of what happens iIn a nozzle can bdbe
attalned only by using a more compiicated fluid continunum
which at least has the additionsl property of friction.

Critical (greatest) flow through a nozzle is not reached
until the shock wave first extends =il the way amscross the
nozzle passage. During the growth of the partial shocks,
however, the flow changes only 1 parcent, Thes greztest flow
ig 0.7 percent less than the theorstical mexiuwum that would
be obtained if the M = 1 1line extended acruss the nozzle
at the throat,

Harvard University,
Cambridge, Mass., February 10, 1945,
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APPENDIX I
SOLUTIOKS WITH COMPRESSION SHOGKS

In a previous report (reference 7) a brief description
was given of the method of fitting compressicn shocks into
the numerical solution., This method has been further per-
fected and is presented here.

In the transformed (£,n) plane, the streamlines, V¥ =
constant, almost colnecide with the N constant lines when
the shock wgves are nearly normal. This circumstance greatly
aimplifies the resulting formulas, so that the derivation
will be carried out with these assumptions, Figure 31 shows
a streamline crossing a shock wave from the supersonie, b,
region to the subsonic, a, region. The obliquity, 8,, of a

shock is given by computation curve 5 of reference 7 in terms
of the Mach number of the approaching stream and the deflec-
tion angle . Thils deflection angle can be computed from
the residuals at points 1 and 2 ag follows, The streaemline
makes an angle o with the £ axis given by

= aﬂ T - \UA )
tan « (B_f»')w ¥ (&)
Thus
¢=G_%zﬁ_ﬂ£&=u& (5)
& ""nb ‘Una ¥n

where the lgst form iIs obtained by neglecting the very small

difference between Wnb and Wh .
a

Now, observe that if the shock wave had not been present
there would have been a "supersonic" value of Wzb at point

2 which would have made the residual at point 1 equal to
zero, If, however, the value of Wga from the subsonic so-

lution is used in computing the residuzl Q,, 1t will have
the value

Q = Vo = Vo = V3 = ¥y - VL b (6)



NACA TN No. 1003 18

or
Yo =V, = Qy
Wg'b = 5 (7)
s 1
imilarly | wa _ W; -y
Ve = 8 (8)

Substitute these into equation (5)

e %+ Q3 _ -2 W+ Q2 (9)
® S0y Y, - Vg

Another relation to be satisfied by the shock wave 1ls
obtained by observing that the vailue of ¥ does not change
across the shock. Thus

Yy + eV =Yz ~ (1 - €) 8¥ (10)
gb Ea.

from which
Yo~y = S

T TR, - v ) (1)
6 -
Eb €e
Again using the relations (?) and (8)
€ L (12)

= Q, + Q2

The shock wave divides the distance between net points
inversely as the residusls.

Finglly, a shock wave as treated in this report, 1s as-
sumed to be continuous, not branched, and ending either at
the wall or where M = 1,

The technique of solution, then, is %0 attempt to elim-
inate all residuals. Failing this, an attempt is made to ac-
cumulate a2ll residuals along some line smong the points. In
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the present work it was rlways fairly obvious where the shock
would be by observing the trend of solutions. Furthermore,
by observing the gign of the rotation term that 138 needed
after the shock %o balance the decrease of the density term,
it was fairly obvious which way to bend the shock. Hence,
early in the course of solution, it was possible t0 sketch in
a likely shock wave and with equations (9) and (12) to com-
pute the required residusls at polnts on both sides.

Now as the solution progresses, and residuals are moved
to the tentative shock positlion, the shock wave angle and
position (by continuity of shock line these are not independ-
ent) are gradually altered. Specific instructions at this
point cannot be glven but it is worth observing that for any
initial Mach number there ie a maximum possible deflection
angle and that for shock waves in a stream near M = 1, the
meximum permligsible deflection 1s very small., EHenge care
nust be exercised during solution to avoid exceeding the max-
imum permissible sum of residues as given by equation (9)
wlth the maximuom .

The formulas of this appendix were derived after making
assumptions about the streamlines and shock waves (tan oy & ag,
tan ap = ap). As a solution nears completion, these assump~
tions can be checked, If they are not met with sufficient
accuracy, more elaborate formulas must be derived using es-
sentially the same methods as the 2bove-~mentioned,

APPENDIX IZ
THE STREAMLINE CURVATURE JUMP ACROSS NORMAL SHOCK WAVES

Let a streamline pass through a shock wave as in figure
32, and suffer =z Jjump in radius of curvature from Ry to
Rg. Assume the stream approaching the shock wave is a per-

fect gas with uniform stagnation state. The approcach flow
will then be irrotational.

The momentum condition applied normal to the streamlines
gives

=
o°p _ P9 (13)

or r
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for each side of the shock wave., Hence, by division,

R
By _ B ?.3&) (14)
Ra qa apb 8

where the subscript s denotes that the derivative is to be
evaluated along the shock wave.

The change in pressure ascrosg the shock is given by the
momentum equation as

Dy = Pp + Ppp® - Pala® = Pp + Pplap® = da9p)  (15)

in view of the continuity condltion Ppdy = Palye
Before eliminating p, between equations (14) and (15),
it is well %o note Prandtl's relation
2 2 4 Y
Y

= 2 5 2 Y -1 _. =
9g3p = %or = ¥ o 1 2b 71 b (18)

a3

whers is a constant becmsuse of the assumed constaent

Qer
stagnation state of the approach stream,

Now by equation (14)

By 9y

+ apb(Qba - q_crz)
Ra

pr

(17)

where the subscript s 1s dropped, as the derivative now de-
pends only upon the approech Mach number. In fact Rb/Ra

depends only upon the approach Mach number,

Carry out the differentiation indicated in equation (19)

and note that aa = %%- and M = iu There results
2
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R a 2 . 2 d 2
o - R, _q_'?_s 1+ 20 :—cr * Py aqb } (18)
Rg Qer a8y Py )

The remaining derivative term is found to have the value -2
by ueing the momentum equation along the streamlines

qadq+ %? = 0 (19)
Thus
B -a
b= % (6® - 1) - ¥ (20)
Eq 9opr®

By eliminating q,,° from equations (16) and (20), there is
cbtained finally

=2
By . ___ N [M . L_i] (21)
a8 1 + Y_._;__l.Ma

The ratio of curvature radii variles from ~1 at M = 1,

through O at M = /l—g—i ( = 1.482 for ¥ = 1,40), through

+l at M = 1,66 for ¥ = 1,40, gnd —> ® g8 MN—>w, The
curve is shown as computation curve (fig. 22). The Mach
number at which no change in curvature ocours across a shock
wave 1s given by

(e [y Y
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APPENDIX I1I

ADDITIONAL REMARKS ON THE NUMERICAL SOLUTION

OF SUPERSONIC REGIONS

There wae no definite procedure specified in the previ-
ous report (reference 7) by which solutions in supersonic
reglons could be obtained. It is still impossible to write
any rigid instructions that are sure to work, This is a
general difficulty as Fox and Southwell (reference 9) state
that their iteration method diverged after reaching a minimum

value.

The residuals 1n the gsolutions could be reduced consid-
erably by the following procedure:

1, Obtain & rough solution uwsing q* constant as ex-
Pleined in reference 7,

2, Move residuals around somewhat in an sttempt to im-
prove the solution. During thls process, draw q* versus
N ourves %0 see that they are smooth, This is especially
important for the evaluation of the properties at the nozszle
wall,

3. Use a finer net making a first estimsete of net val-
ues by using a q”* variastion as already found for the coarse

net,

Some trouble may be experienced in interpolating to =&
finer net in reglons were M & 1, The variation of g4 from

point to point may be such that, on interpolating, the V¥
gradlient exceeds the maximum possible value; or if the gradi-
ent is held down to its meximum permissible value, then the
resulting streamline with the fine net may differ considera-
bly from the corresponding streamline on the coarse net.

This difficulty could be avoided by using at each net point
noet the Qy for that point, but an average qQy for that

point gnd two points on each side of it on the mext finer
net, Using an average from a still finer net was found t0
offer no additional adventage, The five q; values (one at

desired point and two on each side on finer net) were weighted
1, 2, 2, 2, 1 wvhich gives approximately the arez in the
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region +8 on each stde of the desired point. A few other
averages were tried without noticeable benefit. In partic-
ular, since the mass flow is almost constant near M = 1,

it can be shown that a2 harmonic mesn should be taken hut the
resulting "effective®™ qi was not appreciably different
from the average as above-mentloned.
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{a) Shuck wave at nozzle throat. Exposure }o second.

On attempting to repeat the above experiment the following photograph was obtained.

(b) Non-steady shock waves at nozzle throat. Exposure 4 microseconds. Turbulence Is probably responsible for this non-steady phenomens.

Figure 17.—Schlieren photographs of air flow through a nozzle.
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Fig.

(2)

Figure 30.—Schlieren photographs of air flow through hyperbolic chdnn

el, flow left to right

30



NACA TN No. 1003 Figs. 31,33

7, Supersonic Subsonic
region region

Figure 31.

|Shock wave
/
\Z

71;

Figure 32.




“ / o
o\ | | oot e :
\ / / :
AN \ / [ :
\ \
\
9380 e-7o~\ | e=80* @s50° 04
18 \
\
13 If \L \
NN |
wg A \ \
,,3_3* \\ \\ \ \
Ik NAY \
\ \ il
1 \ A\ g

.

N

9

10

12

13

Figure 34.- Wave angl. ms fuuction of Mach nurber befors shook and Kaoch number after shook.




